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1 Motivation
In general, percolation theory is the study of CLUSTERS. When using percolation theory, one constructs a model that
involves a discrete lattice of sites organized in some geometry (which defines which sites are “adjacent” to each other).
Each site is assumed to have some probability p of being occupied. Percolation theory can then tell us about the clusters
of adjacent occupied sites that are likely to form on the lattice.

Two quantities of interest in percolation theory and in percolation-based models are the CRITICAL EXPONENTS, β

and γ . β describes how varying p changes percolation probability (P), or the probability that a randomly selected site
is a part of an INFINITE CLUSTER, the cluster that spans the entire lattice. γ describes how varying p changes χ , the
sum of the squares of the sizes of all of the clusters excluding the largest one.

Percolation theory has many applications in statistical mechanics, and the critical exponents are often related to
experimentally observable properties. Interestingly, experimental data suggests that there are several “groups” or UNI-
VERSALITY CLASSES of phenomena that show the same critical exponents. It is hoped that with percolation theory,
these universality classes can be explained in terms of lattice geometry. Thus, there is great interest in calculating
the critical exponents for various geometries (different number of dimensions, etc.) so that we may determine what
properties do and do not affect the critical exponents. However, the known methods for estimating these exponents
tend to require data that is difficult to obtain. We are interested in finding better ways to obtain this data.

One desired set of data consists of the values of gst/gs. We define gs as the number of unique clusters of size s
as differentiated by shape and rotation, and we define gst as the number of clusters of size s and perimeter t, where
the PERIMETER of a cluster is defined as the number of unoccupied sites adjacent to some site in the cluster. The
only known method for calculating gst/gs exactly is enumeration - that is, we must “count up” all the clusters of size
s and determine how many of these clusters have a given perimeter length. Unfortunately, gs grows very quickly as s
increases; indeed, at s = 47, gs ≈ 2.7× 1026! Therefore, even with computers, we have only calculated gst/gs values
for s≤ 22. This is inadequate for the algorithms with which we want to use this data.
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However, it is hoped that estimates for gst/gs values will be sufficient. To make estimates, it is only necessary
to take a random sample of clusters of size s and count the number of sampled clusters that have perimeter t. As
the sample size increases, the experimental probability of encountering a cluster of perimeter t should approach the
theoretical probability (i.e. gst/gs). Our goal is to determine if this sample-based approach is sufficient.

2 Algorithm Overview
Generating a random sample of clusters is not straightforward; it’s not as simple as randomly selecting clusters from
the list of all clusters. After all, if such a list were available, we would have no need for a mere sample. However, there
does exist a method that we believe will produce a random sample. The algorithm is as follows:

1. Start with an arbitrary initial cluster of the desired size. (Our method of generating this cluster is discussed in
Section 3.3.)

2. Then, to “randomly select” a new cluster:

(a) Remove a randomly selected cluster point.

(b) If this removal “broke” the cluster (i.e. if there now are two clusters), replace the point to its original
location (that is, we will count the original cluster again).

(c) Otherwise, put the point back to a randomly selected perimeter point.

3. Add the resulting cluster to our sample (even this cluster is the same as the one with which we started).

4. Repeat steps 2 and 3 as many times as desired.

In our case, we “add” clusters to our samples by incrementing the appropriate entry in a perimeter frequency table.
These tables are set up to indicate how many clusters of each perimeter were sampled. This way, a single sample will
allow us to estimate gst/gs values for all values of t.

To show that this method will indeed generate a random sample, we call on the mathematics of Markov chains.
Consider the general form of our method; it starts at some arbitrary state (i.e. cluster), and in each iteration, it selects a
new state via a random process that has a probability distribution determined only by the current state. This meets the
definition of a Markov chain, and so the mathematical theorems of Markov chains can be applied.

Mathematicians tell us that if we want to produce a random sample with probability distribution π , we just need to
use a Markov chain that satisfies two properties:

1. Irreducibility: if the process is run for long enough, every state (i.e. cluster) must have a chance of being reached,
regardless of what the starting state is.

2. Stationarity of π: For each state y, ∑x πx px→y = πy, where px→y is the probability of transitioning to state y when
starting from x, and πx and πy are the probabilities that we want to be associated with states x and y when making
the random sample. (In our case, every cluster should have an equal chance of getting selected, so πx = πy for
all x and y).

It has been mathematically proven that our algorithm shows stationary of π . We also believe that our process satisfies
irreducibility, though we are not yet aware of a formal proof of this. All told, we are fairly sure that our algorithm is
correct.

3 Test implementation
However, mathematics can only tell us that as the number of iterations approaches infinity, our method will eventually
produce a good random sample. There is no guarantee that a limited number of samples will produce anything useful.
Thus, empirical tests are necessary.

We have implemented a program that uses our method to take a random sample of clusters on a two dimensional
square lattice. Here, we will discuss some particularly notable properties of our implementation.
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3.1 “Trace Cluster”
The most difficult task is determining if the removal of a cluster point has “broken” a cluster. This is difficult because
the arrangement of cluster points at locations far from the removed point can change the result of this test.

We used a fairly simple-minded approach to this problem; the “trace cluster” algorithm, implemented in TRACE_CLUSTER.PRO.
Ignoring a few details, this procedure accepts a list of coordinates of occupied points and then effectively creates a list
of the points that are connected to a given starting point. We consider the cluster to be closed if and only if the number
of points in this list is equal to the total number of occupied sites.

The algorithm works by maintaining a list of all locations that are adjacent to points in the “cluster sites” list. In
each iteration, we try to find an adjacent point that is occupied. If there exists such a point, we move it to the cluster sites
list, and then we update the adjacent points list accordingly. This process continues until there are no more occupied
adjacent sites.

This algorithm does work, but it is quite slow. Indeed, the TRACE_CLUSTER procedure is usually the most compu-
tationally expensive procedure in our program. Efforts to optimize this procedure or find a faster algorithm would be
beneficial.

A side effect of this algorithm is the generation of a list of perimeter sites; when the procedure is complete, the
adjacent sites list is effectively a perimeter sites list. In the case where the cluster is not broken, this list is used when
randomly selecting a perimeter point and when determining the cluster’s perimeter length when updating the frequency
table.

3.2 Maps, “uni”s, and “bi”s
Many of our algorithms, including TRACE_CLUSTER, frequently need to determine the “status” of a given location
(e.g. determine if it is occupied). While it is possible to do this by searching the list of occupied sites, this is far too
slow. Thus, our program makes the use of “maps”, large 2-dimensional square arrays that contain one entry for each
location that could ever be of interest. To keep the clusters from drifting off these maps, the programs are written to
keep clusters “anchored” at the origin point, and we size the map arrays such that even if a cluster were at its maximum
extension (i.e. a straight line extending from the origin “anchor”), the cluster and all of its adjacent points will still be on
the map. Since we are working with square lattices, this means that the map must have dimensions (2s+1)× (2s+1)
(with the origin at the center).

While these maps are fairly fast, they are memory intensive. For example, to process a cluster of size 8100, one
needs about half a gigabyte of memory for the map alone (assuming 2 bytes are needed for each location). This limits
the size of the clusters that can be comfortably processed with this program; for larger clusters, hashing methods will
be necessary.

While we could use 2-dimensional coordinate pairs (which we call “bi” coordinates) when addressing these maps,
here again we can save computer time. Unlike our lattice, computer memory is 1-dimensional and does not support
the idea of negative coordinates. Thus, when using 2-dimensional coordinates, a conversion process is necessary to
generate the equivalent “uni coordinates”, the 1-dimensional indexes with which we reference the “map” array. If our
programs used coordinate pairs directly, we would have to perform this conversion every time we used the map. Since
many locations are likely to be referenced repeatedly, this is wasteful.

We avoid this inefficiency by writing our programs to use “uni” coordinates internally. Before processing, our
programs use the BI2UNI function to convert coordinate pairs in “uni” coordinates, and then use UNI2BI for convert
these back into coordinate pairs to return to the user.

It must be noted that “uni” coordinates depend on the size of the map that they are indexes for. If the map size
is changed, the “uni” coordinates will change, even if their positions relative to the origin are not changed. “Uni”
coordinates cannot represent points that are outside their corresponding map, and “bi” coordinates are much easier for
users to interpret. Therefore, for storing lists of locations and for manipulating clusters manually, “bi” coordinates are
preferred.

3.3 Initial cluster selection
It is also important to discuss the selection of the initial cluster with which to start the sampling. In theory, this initial
cluster doesn’t matter, but in practice, the limited number of samples require that we get the sampling process on a
“good start”.
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Figure 1: A graph generated during a typical “equilibrium watch” run. We started with a cluster of size 100 as
generated by Eden growth, and we performed number of iterations of our “sampling” process, recording the perimeter
of the cluster at each iteration. Note that the process is started with a cluster of a relatively small perimeter, and
after about 300 iterations, perimeter length reaches a plateau. This plateau indicates that we have reached a “typical”
perimeter length.

In our case, we are interested in cluster perimeters, so it is desirable to start with a cluster that has a “typical”
perimeter length. If we start with a cluster with an “unusual” perimeter, it will take some time before the sampling
method will reach clusters with more typical perimeters. As a result, these “unusual” perimeters are almost guaranteed
to be selected for the sample, and unless the sample is very large, these perimeters will be overrepresented in the
sample. Starting with a “typical” perimeter avoids this problem.

We use a two step method for generating an initial cluster. We call the first step “Eden growth” and the second
“equilibrium watch”.

We use Eden growth to just generate some cluster of the desired size1. The Eden growth process starts with some
“cluster” (which could be as simple as a single occupied point), and then for each iteration, we add a cluster point to a
randomly selected perimeter site. We continue this until the cluster is large enough.

Eden growth does not select clusters fairly; it strongly favors clusters with small perimeters. The “equilibrium
watch”2 procedure is used to counteract this. Here, we perform a number of iterations of our sampling method. Instead
of recording perimeter frequencies, we record perimeter length over time. Figure 1 on page 4 is an an example of the
data collected from this process. Generally, the perimeter will approach the “typical” perimeter length and will stabilize
that that perimeter (i.e. reach equilibrium). We visually inspect graphs such as Figure 1 to determine if equilibrium has
been reached, and we continue to run the process until that happens.

Note that once a suitable initial cluster is obtained, that cluster can be used to help obtain larger initial clusters.
Instead of using Eden growth to create a cluster “from scratch” (i.e. by starting from a cluster that consists of a single
point), we can use Eden growth to “grow” the smaller initial cluster to a larger size. Not only does this shorten the
Eden growth process, but the resulting cluster’s perimeter will be closer to the “typical” perimeter, which will shorten
the “equilibrium watch” step. When working with large clusters, this shortcut is recommended.

1This process is implemented in the program file EDEN_GROWTH.PRO. The function in CLUSTER_INIT.PRO is a shortcut for generating an Eden
growth cluster from scratch.

2This is implemented in EQUILIBRIUM_WATCH.PRO.
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Figure 2: Comparing exact gst/gs values (for s = 22) with estimates based on a sample of 5000 clusters.

4 Basic tests and results
Once we implemented the sampling method, we applied a few empirical tests to check the feasibility of our method
and the correctness of our implementation.

4.1 “Histogram” test
For our first test, we compared the available exact values of gst/gs with estimates based on samples generated with
our sampling method. We generated gst/gs estimates for 2 ≤ s ≤ 22, and for each s, we simply plotted the exact and
estimated data on the same graph and did a visual comparison.3

Figures 2 and 3 are typical examples of the graphs generated in this process. In all of the comparisons made, the
estimates where at least as good as that found in Figure 2. Furthermore, the estimates in Figure 3 are particularly
impressive when we consider that they are based on a sample of 500,000 clusters out of about 3.5× 1011 clusters of
size 22.

Overall, the results where encouraging; at small cluster sizes, no glaring errors appear. However, to test our
estimates at cluster sizes beyond those that have been enumerated, another test is necessary.

4.2 f (s) test
Consider the function ns(p) = ∑t gst ps(1− p)t ; this gives the probability of obtaining at least one cluster of size s
when the probability of any given lattice point being occupied is p. Now consider f (s), which gives the value of p
that maximizes ns(p). It has been shown that as s increases, f (s) should converge on pc (the “critical probability”, the
minimum probability needed for an infinite cluster to appear).

f (s) can be calculated by finding the zero of the derivative,

dns

d p
= ∑

t
gst

(
sps−1(1− p)t − t ps(1− p)t−1) = sps−1

∑
t

gst(1− p)t − ps
∑

t
gstt(1− p)t−1 (1)

3The programs in SIM_COMPARE.PRO and COMPARE.PRO were used for this.
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Figure 3: A repeat of Figure 2 on page 5, this time with 500,000 samples. Note that the estimates are a great deal more
accurate.

Multiplying k/ps−1 (where k is an arbitrary constant), we determine that finding the zero of (1) is equivalent to finding
the zero of the expression

s∑
t

kgst(1− p)t − p∑
t

kgstt(1− p)t−1 (2)

This is true regardless of what k is. So, if we let k = 1/gs, we can use our gst/gs values to generate f (s) estimates4.
Thus, we can check our gst/gs values by using them to make a graph of f (s) and ensuring that the graph has the
expected shape.

Figure 4 on page 7 is just such a graph. For those cluster sizes where exact gst/gs values are available, we have
calculated and plotted f (s) exactly. Then, we calculated and plotted f (s) values using gst/gs estimates for 1≤ s≤ 47.
A visual inspection of the graph shows that the f (s) estimates are quite consistent with the exact values, and f (s) is
shown to be monotonically increasing, just as expected. It does appear, however, that we will have to look at much
larger cluster sizes in order to see a convergence on pc.

To generate this graph, we evaluated f (s) by numerically finding the zero of Equation (2)5. It should be noted
that this method does not work well; early implementations of this function broke down at about s = 40, and even the
current implementation is known to be useless by the time s reaches 100. We believe that this is because for large s, the
slope of (2) near the zero is very small, and this demands unreasonably high precision from zero-finding procedures.
Any further investigation of f (s) will require the creation of a better algorithm.

5 Usage tutorial
To begin, start up IDL (or an equivalent program, such as the free and open-source GDL) and set the current working
directory to the directory where the program files are stored. Then, run the mz0 command to setup the random number
generator.

4We can simplify this further by setting k = ns/gs, where ns represents the number of samples we have taken of clusters of size s. Then, we will
need to supply gst(ns/gs) values - which correspond exactly to the numbers in the frequency tables. This way, we don’t even need to convert our
frequency tables into gst/gs estimates. Indeed, this is what our f (s) implementation does.

5This is implemented in DNDP_ZERO.PRO.
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Figure 4: Graph of f (s) as calculated using both exact and estimated gst/gs values.

gnoutchd@dan-lap:~$ gdl
GDL - GNU Data Language, Version 0.9
For basic information type HELP,/INFO
’GDL_STARTUP’/’IDL_STARTUP’ environment variables both not set.
No startup file read.
GDL> cd, ’~/College/08cSU/Research’6

GDL> mz0
% Compiled module: MZ0.
GDL>

To use Eden growth to generate a cluster of some size, use the cluster_init function. You can use the plot_cluster
function to view the result. (See Figure 5 on page 8 for the graph generated by plot_cluster).

GDL> test_cluster = cluster_init(40)
% Compiled module: CLUSTER_INIT.
% Compiled module: EDEN_GROWTH.
% Compiled module: N_BI_POINTS.
% Compiled module: BI2UNI.
% Compiled module: FIND_ADJACENT.
% Compiled module: UNI2BI.
% Compiled module: ARRAY_INDICES.
GDL> plot_cluster, test_cluster
% Compiled module: PLOT_CLUSTER.
GDL>

We will then want to perform the “equilibrium watch” step, as described in Section 3.3. First, we need to generate the
structure that contains temporary memory for the markov_chain and trace_cluster programs. (Be aware that
if we are working with a large cluster, this structure can be very large. Avoid making copies of it!)

6~/College/08cSU/Research is the path to the directory where these programs are stored on my system. Replace this with the path to the directory
where they are stored on your system.
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Figure 5: Typical graph from plot_cluster

GDL> test_markov = bi2markov(test_cluster)
% Compiled module: BI2MARKOV.
GDL>

We can then use the equilibrium watch function to run the sampling process and watch the perimeter length. These
commands, for example, will run 20 iterations and make a the graph of perimeter length over time. (The resulting
graph is shown in Figure 6 on page 9.)

GDL> watch = equilibrium_watch(test_markov, 20)
% Compiled module: EQUILIBRIUM_WATCH.
% Compiled module: MARKOV_CHAIN.
% Compiled module: MZRAND.
% Compiled module: TRACE_CLUSTER.
GDL> plot, watch
GDL>

If we are not sure that we have reached equilibrium, we can perform more iterations and append the data to the watch
array, like so:

GDL> watch = [watch, equilibrium_watch(test_markov, 40)]
GDL>

Once we are satisfied that we have reached equilibrium, we can start the sampling process in earnest. It is recommended
that one use the markov_interruptible function; this is a wrapper for markov_chain that implements a
workaround for a bug in the Microsoft Windows version of IDL. The workaround ensures that the sampling process
can be aborted with Ctrl+Break7. Here, we run the sampling process for 5000 iterations:

GDL> test_hist = markov_interruptible(test_markov, 5000)
% Compiled module: MARKOV_INTERRUPTIBLE.
GDL>

7See http://www.dfanning.com/misc_tips/endlessloop.html for information about this bug and the available workarounds.
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Figure 6: Graphing the output of the equilibrium_watch function.

test_hist now contains a frequency table; the number of times a cluster of perimeter t was sampled is stored in the
element test_hist[t-1].

If we now wish to take a sample of some larger clusters, we can save some time in the equilibrium watch step by
starting eden growth with a smaller cluster. These commands will grow our cluster to size 80:

GDL> test_cluster = markov2bi(test_markov)
GDL> test_cluster_2 = eden_growth(test_cluster, 80)
GDL>

We can then apply the equilibrium watch procedure, just as before.

5.1 Parallelization
If multiple computers are available, it is possible to increase the number of samples taken by running multiple instances
of the sampling process in parallel. Once we have generated an acceptable starting cluster, we can save it and use it to
start several sampling runs. To save the starting cluster:

GDL> initial_cluster = markov2bi(test_markov)
% Compiled module: MARKOV2BI.
GDL> save, initial_cluster, filename=’initial_cluster.sav’
GDL>

Then, copy the resulting file (initial_cluster.sav) on to several systems. On each machine:

GDL> mz0
GDL> restore, ’initial_cluster.sav’
GDL> test_hist_n = markov_interruptible(bi2markov(initial_cluster), 5000)
GDL> save, test_hist_2, filename=’test_hist_2.sav’
GDL>

(n should be a number unique to each machine).
Then, we can copy all of the histogram save files to one system and add them together:

GDL> restore, ’test_hist_1.sav’
GDL> restore, ’test_hist_2.sav’
GDL> test_hist = test_hist_1 + test_hist_2
GDL>

The histogram table is ready for analysis.
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6 Todo
This research is very preliminary in nature; there is much that can be done from here. Here are some possible tasks:

1. Attempt to find the critical exponents. These numbers are already known for square lattices, but this would be
the ultimate test of our method.

2. Perform some formal statistical analysis. The tests so far have relied upon visual inspection, a technique that is
notoriously unreliable. Statistical analysis would give us a more rigorous understanding of the properties of our
technique. In particular, it would be good to know exactly how large our samples should be.

3. Extend the existing programs. These programs are currently limited to relatively small cluster sizes (due to
memory limitations), are quite slow, and don’t easily permit changes in lattice geometry. Solving these problems
will require major modifications to these programs.
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