
Controlling Head Parking in Laptop Hard Drives
Daniel Gnoutcheff ’11

Union College
2008-2009 CT Scholars Independent Research

Adviser: Prof. Chris Fernandes

December 8, 2009

In modern laptops, hard drives are significant power sinks; therefore, drive
manufacturers are quite interested in developing ways to save power without
reducing performance. However, hard drives are also one of the most fragile
components in modern laptops, and they are the component that is respon-
sible for the most important thing in a laptop - the user’s data. Many hard
drive power management features cause wear and tear, so care must be taken
to manage these features properly. Unfortunately, modern drives tend to use
inadequate control mechanisms, and there is one common firmware bug that
can cause very rapid wear and premature failure. This is a very dangerous bug
that can - and should - be addressed by hard drive manufacturers.

The Problem
The bug is related to the hard drive feature of head parking. A typical drive
consists of a set of magnetic platters and a corresponding set of read-write
heads that actually access and modify data on the platters (see Figure 1 on the
following page). Normally, the heads are positioned over the platters, floating a
very short distance above the platter surfaces. The heads create air drag for the
spinning platters, increasing the power needed to maintain their speed. Also,
the close proximity of the heads and the platters means that physically jarring
the hard drive could cause a head to come into contact with a fast-moving
platter - a catastrophic head crash.

So, to save power and to reduce the risk of a head crash, it is sometimes
desirable to perform a head park. When the disk is not in use, the heads may
be taken completely off the platters. When the disk is next accessed (for either
a read or a write), the heads are pulled back onto the platters (“unparked”) and
normal operation resumes. Heads can be parked and unparked fairly quickly,
and the platters remain spinning while the heads are unparked, so head parking
is usually transparent to the user and the operating system.

Nonetheless, head parking must be used with care. A head park puts a
significant amount of stress on the heads, and in many implementations, the

1

Spindle Head

Actuator Arm

Actuator Axis

Actuator

Platter

Figure 1: A simplified diagram of a hard drive’s platters and associated hard-
ware, in normal operation. Usually, the heads are very close to the platters, and
an air bearing created by the fast-moving platters is used to keep the heads from
hitting them. (Figure based on the graphic from http://commons.wikimedia.
org/w/index.php?title=File:Hard_drive-en.svg&oldid=13777056)

heads may come into physical contact with other components when parking.
Thus, head parks cause wear and tear, and practically all drives have a limit
on the number of parks that they can perform before there is a risk of failure.
With the most recent advancements, modern laptop hard drives typically can
tolerate up to 600,000 park/unpark cycles.

To decide when to park, many hard drives use a very simple fixed timein
algorithm. This algorithm assumes that if the drive has not been accessed for n
seconds (where n is a predefined constant), then it will probably remain idle for
a reasonably long time. Thus, the hard drive will always perform a head park
after n seconds of idle time. For laptop hard drives, n typically defaults to a
value on the order of 6 seconds.

Sadly, it is all too easy to imagine a scenario where this simple algorithm
fails. Consider a setup used to measure daily temperature variations on a large
number of days; say we have a high-precision thermometer set up to give a
reading every 10 seconds. Assume that a laptop has been set up to record these
readings; at each reading, a program writes the temperature to a log file and
instructs the OS to ensure that the data is actually saved to disk (e.g. with the
POSIX fsync call). Assume that this is the only running program on the laptop
that performs disk IO. Thus, we get a disk write every 10 seconds. In every one
of these 10 seconds intervals, the heads will be parked 6 seconds in and then
unparked 4 seconds later; thus, we get 6 park/unpark cycles per minute. At this
rate, we will reach 600,000 cycles after about 1,667 hours. Assuming we run
this laptop for 6 hours a day, this means that a brand new hard drive will reach
its cycle limit after 278 days - much less than a year. That is unacceptable.

Alarmingly, this problem is not limited to contrived scenarios. Nearly every

2

http://commons.wikimedia.org/w/index.php?title=File:Hard_drive-en.svg&oldid=13777056
http://commons.wikimedia.org/w/index.php?title=File:Hard_drive-en.svg&oldid=13777056

Linux distribution - including the popular Ubuntu1 - has a disk access pattern
that triggers this bug, even when the system is idle. Many laptops, including
those considered to have relatively strong Linux support, ship with hard drives
that have this problem, and there is empirical evidence that this bug can cause
drives to fail within a year of purchase2. This has led to a wave of bad publicity
- including an alarming Slashdot article3 - and a lot of very concerned users
(myself included). Clearly, something must be done.

How to Fix It
It might initially appear that this bug can be fixed by having the operating
system guarantee a disk access pattern that avoids the problem. However, for
most OSs, this guarantee is impossible. Consider the temperature logger again,
where all disk IO is created by a single process. That process simply reads
the temperature, saves the value, syncs to disk, and repeats after 10 seconds.
Between each temperature reading, the OS has no IO to do, so it has no excuse
to access the disk between readings. If we assume a fixed timein of 6 seconds,
this means that the OS is forced to allow a head park before the next reading.
So every time we do a reading, the OS will be asked to write data to a disk
that’s parked - and this will happen every 10 seconds. The only way the OS can
avoid a park/unpark every 10 seconds is to delay the write, allowing the disk
to stay parked for a reasonably long time. But the logger program tries to do
each write synchronously, so it will get blocked for long periods of time. This
will cause unacceptably poor performance and, in our case, ruin the experiment.
This is unacceptable behavior, so the the OS is forced to skip the delays and
access the disk immediately - thus leading to exactly the kind of excessive head
parking that we’re trying to avoid.

Thus, thanks to the need for synchronous IO and the demand for speed, the
OS has very little control over its disk access pattern. Any process, including an
unprivileged one belonging to an untrusted user, can cause a disk access at any
time, allowing just about any kind of access pattern to arise under just about
any OS. While tweaking the IO subsystem can reduce the risk of a dangerous
access pattern, it cannot eliminate it, and when the danger involves damaged
hardware and lost data, any risk is too great.

An alternative solution is disabling head parking completely. This is a popu-
lar option among Linux users trying to workaround this bug, and it is a straight-
forward (and dramatic) way to guarantee that excessive head parking will not
occur. However, this method misses out on the potential benefits of head park-
ing, and it is surprisingly difficult to implement. There is no standard interface
for controlling automatic head parking, and some drives will continue parking
even when all power management has ostensibly been turned off. Worst of all,
many laptop hard drives are mounted with limited ventilation, apparently un-

1https://launchpad.net/ubuntu/+source/acpi-support/+bug/59695
2http://paul.luon.net/journal/hacking/BrokenHDDs.html
3http://hardware.slashdot.org/article.pl?sid=07/10/30/1742258

3

https://launchpad.net/ubuntu/+source/acpi-support/+bug/59695
http://paul.luon.net/journal/hacking/BrokenHDDs.html
http://hardware.slashdot.org/article.pl?sid=07/10/30/1742258

der the assumption that the drive’s power management features will reduce the
amount of heat released. When power management is disabled, these drives
heat up - and it is well understood that heat accelerates drive failure.

Thus, we are forced to face the challenge of handling head parking correctly.
We must develop a new mechanism, a new park decision algorithm, that
determines when it is appropriate to park. It must be simple enough to be easily
implemented in hard drive firmware. It should keep the heads parked for as long
as possible so as to maximize power savings. Finally, and most importantly, it
should be robust enough so that no matter what the disk access pattern is, the
park rate (the number of head parks per unit time) is low enough that the
drive will have a reasonably long lifetime.

The Budgeter and the Suggester
One way to control the park rate is to add a mechanism I call the budgeter.
The Budgeter is best thought of as a “relief valve” that can be added to an
existing park decision algorithm (the “suggester”) and prevents hardware
damage in the case that the suggester behaves badly.

The mechanism is simple. Before operation, we define the maximum number
of parks allowed during a defined amount of time. For example, we may say
that we will allow up to 5 parks in a 10 minute period. During operation, we use
the suggester algorithm to decide when to park, and we stop once 10 minutes
is up or 5 parks have been performed. If the parks are “used up” first, we stop
parking and wait until the block of time ends. Then, we repeat for the next
block. In other words, this mechanism works by dividing time into successive
blocks and, within each block, stopping all parking once the maximum number
of parks is reached.

While this mechanism effectively fixes the original bug, it has efficiency prob-
lems. If too many parks are suggested, we may end up “wasting” parks early in
a time block and thus losing some good opportunities later. Thus, in addition
to using this relief valve, it is also desirable to use a suggester that can adapt
to the given disk access pattern and at least try to control the number of parks
it suggests. To this end, we present and evaluate a few algorithms that improve
upon the fixed timein by attempting to automatically calculate an appropriate
timein.

New Suggesters
Sliding Window - Period Frequency
The sliding window period frequency mechanism (codenamed SWPeriodFre-
quency) assumes that every idle period (the time between two successive
disk accesses) has a length given by an independent random function that has
a probability distribution approximated by the last n idle periods (where n is a
predefined constant). This assumption is believed to be reasonable, as programs

4

Time: 0 2 4 6 8 10 12 14 16 18 20 . . .
Freq: 1000 10 0 100 0 0 0 0 0 0 50 . . .

Case 0 Case 1 (sum: 100) Case 2 (sum: 50)

Now

Figure 2: An example of a frequency table maintained and analyzed by SWPe-
riodFrequency. In this situation, 4 seconds after the last disk access, there are
more entries under case 1 (don’t park) than under case 2 (do park), so we don’t
park.

Time: 0 2 4 6 8 10 12 14 16 18 20 . . .
Freq: 1000 10 0 100 0 0 0 0 0 0 50 . . .

Case 0 Case 1 (sum: 0) Case 2 (sum: 50)

Now

Figure 3: The same frequency table as in Figure 2, analyzed again 4 seconds
later (assuming no intervening disk access. Now, there are more entries in case
2 than in case 1, so we do park.

that access the disk on a regular basis often do so on fixed intervals, and these
programs tend to operate in the background for long periods of time. To store
the necessary history data, this algorithm maintains a frequency table of the
lengths of the last n idle periods.

To determine when it is appropriate to park, let s denote the amount of
time since the last disk access and define m to be the minimum park time,
the minimum amount of time for which we want to stay parked once we decide
to park. At any given time, we park if there is at least a 50% probability that
we would stay parked for at least m seconds. To estimate this probability, we
consider three cases. Case zero is where the idle period is shorter than s; we
already know that we are in an idle period of at least s, so we can ignore this
case. Case one is where the idle period length is at least s but less than s+m;
this is the case where we shouldn’t park, because we would stay parked for less
than m seconds. Finally, case two is where the idle period length is at least
m+ s; this is the case where we should park. We look at the frequency table to
determine which of case 1 and 2 has been more common in the recent past, and
we park if and only if case 2 has been more common. Figure 2 has an example
of a situation where we don’t park; Figure 3 shows a situation where we do.

This is probably the most “sophisticated” algorithm presented here. It main-
tains complete information about the disk usage history, so it is quite “accurate”.
However, it is rather complex, perhaps too much so to be implemented in hard
drive firmware. We must have enough storage space not only for the frequency

5

Unparked Parked

TimeinIdle period Timein extension

Figure 4: Example of extending the real timein under the Proposer algorithm.

Real:

Proposal:

Figure 5: An extension of Figure 4, adding the proposed timein. We simulate
how the disk would behave under the proposal and make any necessary exten-
sions. After a period of time, the real timein is replaced by the proposal and
we reset the proposal to zero.

table but also for a rather large queue to facilitate the discarding of old en-
tries. Even with several optimizations, this mechanism requires many kilobytes
of memory and, in certain scenarios, many processor cycles. Worst of all, the
history is maintained in terms of the number of idle periods, not the amount
of time. The time represented can vary widely, and a large burst of disk IO
- in other words, a very large number of very small idle periods - can end up
dominating the frequency table, flushing out useful data.

Proposer
The Proposer algorithm essentially increases the park timein whenever it ap-
pears appropriate to do so. We initialize the timein to some predefined constant
(e.g. 6 seconds), and then, every time there is a head unpark, we determine if
we have been parked for at least the minimum park time (m). If we have not
(i.e. we just had a bad park), then we increase the timein to be equal to the
length of the idle period that caused the bad park. Then, future idle periods of
that length won’t lead to more bad parks. Figure 4 shows an example.

Of course, it is sometimes safe (and desirable) to make the timein shorter,
and so far we have no way to do that. We thus introduce the proposed timein,
separate from the real timein. The proposed timein is initialized to zero. Then,
for each idle period, we determine how the disk would have behaved if the
proposed timein were real. If the proposal would have led to a bad park, we

6

extend the proposal to be equal to the length of the idle period that caused the
simulated bad park, as is shown in Figure 5 on the preceding page. In this way,
we “develop” a proposed timein for a predefined amount of time (the cook
time, on the order of 5 minutes). Then, we set the real timein equal to the
value we developed, reset the proposal to zero, and continue.

The Proposer has several interesting properties. First, it is very simple and
easy to implement; it needs only 2 variables, and it only requires that we run a
small O(1) algorithm on each disk access. Also, its window size (i.e. the amount
of disk usage history it considers) is based on time, making it insusceptible to
floods of short idle periods. However, the history is “stored” in a very limited
form and a lot of potentially useful information is discarded. For example, if
there is a process that, on rare occasions, accesses the disk after 10 seconds
of inactivity, a timein of, say, 4 seconds might still be appropriate. However,
this algorithm cannot distinguish between an idle period length that occurs
frequently or one that occurs rarely, so it will insist on a timein of at least 10
seconds.

Evaluation
Both of these algorithms use numerous assumptions and simplifications; to de-
termine if they behave well in practice, we need to test them against a real
world situation. To do this, we collect data on the disk access pattern of a real
system, implement each of these algorithms, and then run simulations based on
the collected data to see how these algorithms behave.

Data collection
The Linux kernel contains a switch called block_dump that is designed to
assist investigations of disk IO and power management. When block_dump
mode is enabled, the disk IO subsystem becomes very verbose, printing into the
kernel log buffer information about every disk and file access. Furthermore, if the
kernel is configured appropriately during compilation, it will print timestamps
in each log message4. This data can provide complete information about the
disk access pattern, and it is a perfect source of data for our simulations.

For about a month, I used the block_dump mechanism to record the disk
access pattern of my laptop while using it in the middle of a college term, forming
what I call the disk log. Care had to be taken while recording this data. It
was not safe to use the existing logging system; when it saves a message about
a disk access, it causes another disk access, causing another disk access message
to be printed, leading to another disk access, etc. The result is an infinite loop
of logged disk accesses, consuming CPU time, disk bandwidth, and disk space.
And, of course, the loop dramatically distorts the disk access pattern, making
the data nearly useless. Since this data collection was performed over a long
period of time on a production system, simply disabling the logging system

4This is the CONFIG_PRINTK_TIME option, accessed from the Kernel Hacking menu.

7

was not an option. Instead, a small program was inserted between the kernel
log buffer and the main logging system, redirecting block_dump output to a
file on a ramdisk. Even then, care had to be taken, as block_dump also prints
information about ramdisk accesses. It was thus necessary to filter out messages
not related to real disk IO.

The collected data is representative of how I use my Linux system during a
typical college term. It covers a variety of activities (web surfing, word process-
ing, programming, note taking, software installation, etc.), and it also covers a
few different tweaks and modifications I have made to the disk IO subsystem.
However, it is limited to a single user and a single operating system.

Finally, it should be noted that the log data does not include information
about when the system is shut down or suspended. Such periods sometimes ap-
pear as very long idle periods, which is inaccurate since this time does not count
toward the hard drive’s uptime. To address this problem, all idle periods longer
than 5 minutes are ignored. On the laptop in question, real idle periods longer
than 5 minutes are rare, and since the algorithms being tested are supposed to
handle any disk access pattern, the modified data is still suitable for testing.

Frequency of parks
Simulations of the proposed decision algorithms and of the existing fixed timein
algorithm were implemented in Java. Each algorithm implementation supports
the “recording” of the length of the most recent idle period and the querying
of the algorithm’s effective timein value after that period. Then, a combination
of Unix awk/sed scripts and a Java driver program were used to read the disk
log and use it as a script for a disk IO simulation. The decision algorithm
simulators were given idle period lengths from the disk log, and after each period,
the appropriate timein was generated. The driver program keeps track of how
many parks the algorithm ends up performing as well as the total amount time
that the heads are parked. This continues until the disk log data is exhausted.

This simulation was run for each of the suggester algorithms presented. The
results are in Table 1 on the next page. It appears that both SWPeriodFre-
quency and Proposer successfully reduce the number of parks performed. Hard
drive lifetime has increased by at least a year in all cases, and in some cases
much more. Thus, it appears that these new algorithms have much less of a
dependence on the Budgeter. So, in this respect, the two algorithms are tied.
To break the tie, we consider the second criterion - efficiency.

Efficiency
Since head parks have a cost, we want to chose a decision algorithm that is
most likely to find those times where it is most beneficial to “spend” a park.
One way to do this is to look at the total park time of each algorithm - the
higher the time, the more benefit gained from parking, and therefore the more
efficient the decision algorithm. However, each test resulted in a different num-
ber of parks, which complicates comparison. In general, reducing the number

8

Description Total park
time

Number
parks

Projected HD
lifetime (years)

Original (fixed timein of 6
seconds)

481,111 16,509 2.4

Proposer (min parktime = 10
seconds)

354,247 9,822 3.6

SWPeriodFrequency 299,083 8,987 4.2
Proposer (min parktime = 15

seconds)
297,934 7,272 5.1

Proposer (min parktime = 30
seconds)

210,081 4,127 9.0

Table 1: Number of parks and hard drive lifetimes for the proposed suggesters,
as compared to the 6 second fixed timein. The table is sorted by the number
of parks in descending order. SWPeriodFrequency was run with a minimum
parktime value of 30 seconds, and all of the Proposer implementations were
configured with a cook time of 5 minutes. All of these runs covered 654,664
seconds (about 182 hours) of recorded hard drive runtime. Hard drive lifetime
was estimated by assuming that the frequency of head parking would be about
constant in the drive’s lifetime, that the drive can perform 600,000 park/unpark
cycles before there is a risk of failure, and that the drive is in operation during
about a third of a day.

of parks reduces the total park time, and this correlation must be accounted
for in any comparison. To deal with this, we need to establish a common scale
that considers the effects of the disk access pattern and the allowed number of
parks.

One approach is to consider the fixed timein park time. By appropriate
processing of the disk log, it is possible to determine the virtual timein of
each algorithm, the fixed timein value that would have caused the corresponding
number of parks. We can then determine the total parktime that the virtual
timein would have led to. This will allow us to do some rough comparisons of
the efficiencies our new algorithms to that of the fixed timein.

Another metric worth considering is ideal park time. Imagine that we
had a perfect, magical park decision algorithm that could look into the future,
and assume that we allowed this algorithm to perform n parks during a certain
interval of time. What decisions would it make? The answer is straightforward;
it would park right at the beginning of each of the n longest idle periods.

It’s easy to see why this is the case. First, it’s clear that we should try
to park right at the beginning of the periods; if we are going to park during
a certain period, we maximize the time parked by staying parked during the
entire period.

We can also show, with great certainty, that we should park during the
longest idle periods. Let I be the set of all idle periods in the given time
interval, M the set of the n largest idle periods, and P the set of idle periods in

9

which we should be parked. Note that the total park time is
∑
P , the sum of

all of the lengths of the idle periods in P . Also note that |P | ≤ n; that is, the
number of idle periods we park in is limited to the number of parks that we are
allowed to do.

Suppose (for contradiction) that there is an idle period x ∈ P such that
x /∈ M . Then, there must be some y ∈ M where y /∈ P (otherwise, P would
contain more than |M | = n elements, which is not allowed). Since x /∈ M and
y ∈ M , y must be longer than x; therefore, we can increase

∑
P by replacing

x ∈ P with y; so x really shouldn’t be in P . Therefore, we have P ⊆M .
Finally, assume (for contradiction) that there is an element z ∈ M where

z /∈ P . Since P ⊆ M , we can say that |P | < n - that is, we have “room” for
more parks. We can increase

∑
P by putting z into P ; thus, we really should

ensure that M ⊆ P . Combined with P ⊆M , this means we have P =M - that
is, we should park during and only during the n longest idle periods.

No algorithm we develop is going to be made of magic. It will not have
information about the future, and so it most likely will make mistakes. Thus,
we cannot expect any real algorithm to achieve ideal park time. However, the
concept remains useful for much the same reason that the traditional engineering
concept of efficiency is useful; it allows us to gain a sense of how much room
there is for improvement, and perhaps shed light on the sources of inefficiency.

Table 2 on the following page compares the performances of our new algo-
rithms. They fared about as well as or a little better than the fixed timein
mechanism. The Proposer algorithm tended to perform better; the most likely
explanation is that the large bursts of very short idle periods flooded the history
stored by SWPeriodFrequency, thus harming its performance.

The more surprising results come from comparisons with ideal parktime. In
terms of efficiency, all of the new algorithms perform much worse than does
the original 6 second timein. It seems that, in general, efficiency decreases
dramatically as the number of parks increases. This is even true of the fixed
timein, as Figure 6 on page 12 demonstrates.

Since we want to reduce the number of parks without losing the benefits of
head parking, we need to address this inefficiency. Since all three algorithms
show very similar efficiencies, and since SWPeriodFrequency and Proposer al-
gorithms are essentially designed to calculate a reasonable timein value, it’s
reasonable to assume that they all have the same source of inefficiency. Thus,
we will consider only the fixed timein and assume that the timein has been set
by some external (and possibly automated) mechanism. Assume a fixed timein
of n seconds. We know that this will cause a park in every idle period that is
longer than n seconds; let m denote the number of such periods. So far, this
matches the ideal behavior in that we always park in the m longest periods.
However, we don’t park right at the beginning of these periods; rather, we wait
n seconds before parking. Since we have this delay with every park, we end
up wasting n ×m seconds of potential park time. As long as we use timeins,
we cannot avoid this waste - and with my system at least, trying to reduce m
results in a lot of waste.

10

D
es
cr
ip
tio

n
To

ta
l

N
um

be
r

V
irt

ua
l

Fi
xe
d
tim

ei
n
pa

rk
tim

e
Id
ea
lp

ar
k
tim

e
pa

rk
tim

e
pa

rk
s

fix
ed

tim
ei
n

To
ta
l

%
ac
hi
ev
ed

To
ta
l

%
ac
hi
ev
ed

O
rig

in
al

(fi
xe
d
tim

ei
n
of

6
se
co
nd

s)
48
1,
11
0

16
,5
09

6.
00

48
1,
11
0

10
0.
00
%

58
0,
16
5

82
.0
0%

Pr
op

os
er

(m
in

pa
rk
tim

e
=

10
se
co
nd

s)
35
4,
24
7

9,
82
2

18
.5
4

32
3,
04
1

11
0.
00
%

50
5,
14
4

70
.0
0%

SW
Pe

rio
dF

re
qu

en
cy

29
9,
08
3

8,
98
7

20
.3
3

30
5,
97
7

98
.0
0%

48
8,
66
4

61
.0
0%

Pr
op

os
er

(m
in

pa
rk
tim

e
=

15
se
co
nd

s)
29
7,
93
4

7,
27
2

25
.6
9

26
1,
56
8

11
4.
00
%

44
8,
40
8

66
.0
0%

Pr
op

os
er

(m
in

pa
rk
tim

e
=

30
se
co
nd

s)
21
0,
08
1

4,
12
7

33
.9
4

21
2,
21
9

99
.0
0%

35
2,
29
4

60
.0
0%

Ta
bl
e
2:

T
he

pa
rk
-t
im

e
pe

rf
or
m
an

ce
s
of

th
e
or
ig
in
al

6
se
co
nd

fix
ed

tim
ei
n
m
ec
ha

ni
sm

,c
om

pa
re
d
w
ith

th
e
pr
op

os
al
s.

T
he

ne
w

al
go
rit

hm
s
se
em

to
be

at
le
as
t
on

pa
r
w
ith

fix
ed

tim
ei
ns
,b

ut
th
e
id
ea
lp

ar
k
tim

e
nu

m
be

rs
re
ve
al

ga
pi
ng

in
effi

ci
en

ci
es

in
al
l

th
re
e
al
go
rit

hm
s.

11

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 50 100 150 200 250 300
0

20

40

60

80

100

#
pa

rk
s

%
id
ea
l

Timein value (seconds)

Number of parks
% of ideal parktime achieved

Figure 6: The behavior of the fixed timein algorithm for different timein values,
using the collected disk log. As the timein increases, the number of parks
decreases (unsurprisingly). However, with this disk log, we also see a dramatic
fall in efficiency (as measured by the fraction of ideal parktime achieved).

12

Conclusions
Out of the three decision algorithms considered - the original fixed timein, SW-
PeriodFrequency, and Proposer - it seems that the Proposer (combined with
a Budgeter as a relief valve) is the best option. It controls the frequency of
parks, and at least with the disk log collected, it is the most effective (by a
small margin) at maximizing the total time spent parked. Further, it is very
simple to implement, placing low demands on whatever system component it is
implemented in.

However, there is much that should be done before we make a push to get
this implemented. All testing was done on only one data set from only one user
from only one operating system; it is not at all clear that the Proposer will
perform as well under different conditions; more data collection and testing is
imperative.

Furthermore, power usage implications need to be considered more carefully.
While some power is saved when the heads are parked, this is somewhat offset
by the power used by the actual park/unpark operation. More data must be
collected on the actual power usage involved, as this may have significant impli-
cations on how a park decision algorithm should be designed and/or configured.

Finally, there is the problem of efficiency. In terms of maximizing total park-
time, the Proposer is quite far from ideal, and it seems that this is due to the use
of a timein-based design. It is likely that we have already taken timeins as far as
they can go, and alternatives should be investigated. The algorithms presented
so far assume that each idle period is independent, but future algorithms might
try to find patterns in disk usage, perhaps even monitoring individual processes.
Locality of reference has not been considered, but this principle gives us a great
deal of information about disk accesses, and a decision algorithm could take
advantage of this information.

But as crude as the Proposer-Budgeter combination is, it is still an unques-
tionable improvement over the fixed timein. Fixed timeins are blind and some-
times dangerous, and their replacement is possible and very necessary. There is
no excuse for their continued use.

13

